Relationships between in vivo microdamage and the remarkable regional material and strain heterogeneity of cortical bone of adult deer, elk, sheep and horse calcanei.
نویسندگان
چکیده
Natural loading of the calcanei of deer, elk, sheep and horses produces marked regional differences in prevalent/predominant strain modes: compression in the dorsal cortex, shear in medial-lateral cortices, and tension/shear in the plantar cortex. This consistent non-uniform strain distribution is useful for investigating mechanisms that mediate the development of the remarkable regional material variations of these bones (e.g. collagen orientation, mineralization, remodeling rates and secondary osteon morphotypes, size and population density). Regional differences in strain-mode-specific microdamage prevalence and/or morphology might evoke and sustain the remodeling that produces this material heterogeneity in accordance with local strain characteristics. Adult calcanei from 11 animals of each species (deer, elk, sheep and horses) were transversely sectioned and examined using light and confocal microscopy. With light microscopy, 20 linear microcracks were identified (deer: 10; elk: six; horse: four; sheep: none), and with confocal microscopy substantially more microdamage with typically non-linear morphology was identified (deer: 45; elk: 24; horse: 15; sheep: none). No clear regional patterns of strain-mode-specific microdamage were found in the three species with microdamage. In these species, the highest overall concentrations occurred in the plantar cortex. This might reflect increased susceptibility of microdamage in habitual tension/shear. Absence of detectable microdamage in sheep calcanei may represent the (presumably) relatively greater physical activity of deer, elk and horses. Absence of differences in microdamage prevalence/morphology between dorsal, medial and lateral cortices of these bones, and the general absence of spatial patterns of strain-mode-specific microdamage, might reflect the prior emergence of non-uniform osteon-mediated adaptations that reduce deleterious concentrations of microdamage by the adult stage of bone development.
منابع مشابه
Osteocyte lacuna population densities in sheep, elk and horse calcanei.
Osteocytes, the most prevalent cell type in bone, appear to communicate via gap junctions. In limb-bone diaphyses, it has been hypothesized that these cellular networks have the capacity to monitor habitual strains, which can differ significantly between cortical locations of the same bone. Regional differences in microdamage associated with prevalent/predominant strain mode (tension, compressi...
متن کاملRelative Contributions of Material Characteristics to Failure Properties of Cortical Bone in Strain-mode-specific Loading: Implications for Fragility in Osteoporosis & Aging
Recent studies of mechanical properties of cortical bone in osteoporotic and aged skeletons reveal significant reductions in toughness or energy absorption -a hallmark of post-yield behavior (McCalden et al., 1993). Variations in mineral content (% ash), porosity, or secondary osteon population density (OPD), however, can not explain a large percentage of the variance in these mechanical test d...
متن کاملRelationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus.
If a bone's morphologic organization exhibits the accumulated effects of its strain history, then the relative contributions of a given strain stimulus to a bone's development may be inferred from a bone's hierarchical organization. The artiodactyl calcaneus is a short cantilever, loaded habitually in bending, with prevalent compression in the cranial (Cr) cortex, tension in the caudal (Cd) cor...
متن کاملAre distributions of secondary osteon variants useful for interpreting load history in mammalian bones?
BACKGROUND/AIMS In cortical bone, basic multicellular units (BMUs) produce secondary osteons that mediate adaptations, including variations in their population densities and cross-sectional areas. Additional important BMU-related adaptations might include atypical secondary osteon morphologies (zoned, connected, drifting, elongated, multiple canal). These variants often reflect osteonal branchi...
متن کاملA weighted osteon morphotype score outperforms regional osteon percent prevalence calculations for interpreting cortical bone adaptation.
Using circularly polarized light microscopy,we described a weighted-scoring method for quantifying regional distributions of six secondary osteon morphotypes(Skedros et al.: Bone 44 (2009) 392-403). This osteon morphotype score (MTS) strongly correlated with "tension" and "compression" cortices produced by habitual bending. In the present study, we hypothesized that the osteon MTS is superior t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of anatomy
دوره 219 6 شماره
صفحات -
تاریخ انتشار 2011